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1 RARE DISEASE DIAGNOSIS IN THE HEALTH SYSTEM 
While individually rare, inherited and de novo genetic disorders collectively affect >5% of newborns 

(Baird, et al. 1988), representing a substantial challenge for the health system and significant costs to 

society (Baldovino, et al. 2016). Due to their rarity, diagnosing and treting these conditions is difficult. 

While some of these diseases are only detected later in life, many are diagnosed in infants after 

admission to a neo-natal ICU (NICU) after presenting with atypical or otherwise inexplicable symptoms. 

Most of these conditions have direct genetic causes or a substantial genetic component, so once 

admitted patients are generally subjected to a series of targeted genetic and metabolic tests. Negative 

results are followed by additional rounds of testing, each of which is subsequently less likely to identify a 

clinically actionable result.  

These successive rounds of testing and re-hypothesizing require substantial clinical work and represent a 

significant cost to the health system, but more importantly consume critical weeks and months. 

Healthcare writing on the topic often refers to a ‘diagnostic odyssey’ (Black, Martineau and Manacorda 

2015). and this is an appropriate term: in an EU-wide survey, 25% of patients had to wait between 5 

and 30 years for a diagnosis, often after dealing with upwards of 5 to 10 physicians, and 40% of patients 

receive incorrect diagnoses, often leading to inappropriate medical or surgical treatment (EURORDIS 

2009). 

Clinical sequencing has the potential to drastically change the diagnostic odyssey of these children. By 

applying a broad, hypothesis-neutral first-line diagnostic such as whole genome sequencing, clinicians 

can quickly identify potential genetic causes. Depending on the sequencing approach and existing 

diagnostic landscape, exome or whole genome sequencing as a first-line diagnostic commonly leads to 

molecular diagnoses in 40-60% of infants, often within a period of weeks, rather than years (Farnaes, et 

al. 2018). 

 

2 NEXT-GENERATION SEQUENCING IN A NEO-NATAL SETTING 
When compared to other NGS applications, broad exome or whole-genome rare disease diagnostics 

offers unique challenges. Firstly, turn-around time (TaT) is critical as many of these diseases represent 

acute, life-threatening illnesses. The strict requirement for short TaT requires the optimization of work-

flows, sequencing, and bioinformatics pipelines, but also represents a logistical and operational challenge. 

Hospital scheduling, sample transit, and wet-lab and bioinformatics logistics all have significant impacts 

on TaT. Secondly, WGS or exome diagnostics for rare diseases differ from many diagnostics in that the 

approach is hypothesis neutral: the exact genetic abnormality is not known prior to testing. As such, 

there can be significant uncertainty regarding test results, since full validation and verification (as is 

performed with large cancer cohorts, for example), is not possible. Instead, the interpretation and 

selection of appropriate variants to influence treatment decisions relies on the expertise and often 

iterative detective work performed by one or more clinical geneticists. The time and effort required for 

this interpretation is difficult to predict, and may vary from case to case. 
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3 IMPLEMENTING NICU-SEQ 
The Department for Medical Genetics at OUS (AMG) is in the process of putting a production NICU 

sequencing pipeline in place. There are a wide variety of design choices that impact the speed, accuracy, 

and effectiveness of this testing program. The goal of this work, funded through the Norwegian BigMed 

project, was to provide insight into how certain design choices could impact TaT, specifically. AMG 

routinely conducts similar diagnostics in a production setting, however median TaT for routine analysis is 

around 8 weeks and for prioritized samples (medical urgency) around 4 weeks (OUS AMG). In contrast, 

paediatric hospitals such as the Rady Children’s hospital in San Diego or Children’s Mercy in Kansas City 

(Miller, et al. 2015) have demonstrated 26-48 h TaT, and in regular production see median TaT of 

around 7 days (range 3-12). More recent implementations relying heavily on automation have achieved 

regular TaT of under 24 hours, demonstrating that rapid WGS is achievable in a clinical setting (Clark, et 

al. 2019). Improving TaT leads to better outcomes for patients and lower overall healthcare costs, and 

the ultimate goal of this work should be to inform design decisions to reduce TaT for future clinical 

implementation. 

A key objective of the work presented here was to identify the key factors for low TaT, and consider 

these within the broader context of quality, IT limitations, and pre-existing clinical workflows at AMG. 

The first part of this work was to map out fast NICU-seq pipelines from two leading children’s hospitals in 

detail. Technical details, I/O requirements, technologies and software used, organizational considerations, 

and strategies for delivering fast clinical reports for infants were gathered and documented below. 
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4 EXAMPLE NICU-SEQ PROCESS (MILLER, ET AL. 2015) 

 

Figure 1: Process map of NICU-Seq pipeline from Miller et al. (2015). Steps corresponding  to the processes listed below are  placed on  
a time scale beginning with patient presentation.
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This process reflects the previous world-record holding paediatric WGS pipeline, in use at the Rady 

Children’s hospital in San Diego, Children’s Mercy in Kansas City and others (Miller, et al. 2015). In brief, 

patient enrolment, library preparation, and the start of the sequencing run is completed on the first day. 

While this is ongoing, in parallel family interviews and an interrogation of the patient’s journal generate a 

set of HPO terms. These terms are used as input for two tools which correlate these with databases of 

genetic diseases to identify lists of candidate diagnoses/genes. Sequencing is performed on two flow 

cells of a modified HiSeq 2500, which has been optimized to require 18-21 hours instead of the standard 

25,5. During the second day, run data is streamed into a standalone server, which executes read 

alignment, duplicate removal, and variant calling in approximately 40 minutes. Variants are in silico 

annotated with custom software, and clinical geneticists examine the annotated variants in conjunction 

with clinical data in a custom explorer/mark-up portal. Points below refer to the steps in process map 

(Figure 1). 

 

1. Standardized uptake form is completed by referring physician. Intended to collect primary 

symptoms, a brief list of past diagnostics and previous attempts, family history, etc. Rather than being 

evaluated by a panel in a regular multidisciplinary meeting or NICU board, once completed this is 

immediately evaluated by experts.  

2. The enrollment decision is based on whether likely diagnosis could be detectable by NGS. There 

is no clinical screening for parents prior to uptake. 

3. No specific notes on informed consent protocols are given. 

4. No specific notes on collection protocols are given. Samples are taken from trios where possible, 

otherwise from single parents or only the proband. Blood samples for the proband are kept within 

maximum daily phlebotomy limits. Note that even for small infants it should be possible to obtain the 

required volume, but that physicians will need to prioritize the importance of NGS vs. other diagnostics 

in some cases. 

5. DNA extraction is automated on an MSMI Chemagen (PE) with standard kits and a 24-well head. 

The entire instrument is enclosed in a biosafety cabinet. DNA isolation and purification is bead-based. 

Input for the procedure is 1,8 ml blood per sample. Isolation takes 2 h and delivers 40 µg of DNA per ml 

blood. According to PE, the DNA blood kit runs in only 45 min, so the 2 h here likely includes set-up time, 

blood transport and sample intake, etc. 

6. DNA QC protocols are not detailed, however the total duration of DNA isolation, QC, and shearing 

is 2:30. Shearing is performed with a Covaris S2 using 2 µg of input DNA. 

7. PCR-free library prep kits are used in all instances, and follow a standard end-repair, A-tailing, 

and ligation protocol. All purifications are SPRI-based, no information on whether single or double cutoffs 

are used. For the ultra-fast workflow, Kapa Hyper Prep kits are used (90 minutes), otherwise TruSeq 

DNA. 

8. Library QC takes 60-90 minutes. No details are given, so it is not known of only fluorometric 

methods or also qPCR standards are used. Language in the papers indicates clustering needed 

optimization, potentially indicating libraries are quantified with fluorometer only (ie. no fragment analysis) 

and rely on consistent fragment sizes, concentration, and adapter load to cluster well. 
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9. Sequencing with a HiSeq 2500 in rapid mode with 2x100nt PE kit. Using one or usually two flow 

cells (300 or 600mio PE reads). Officially a 27 h run time, this can be done in 25:30 in practice. There is 

a second option for a custom, ultra-rapid run mode that reduces this 25:30 to 18-21 hr. This 

modification requires changing the SBS cycle, temp ramp, and microfluidics. After optimization, quality 

and cluster density does not appear significantly different from the commercially supported protocol. 

Runs typically generate 1,15 bn 101 nt reads and yield 37x coverage after quality filtering and alignment.  

10. While library prep and sequencing is ongoing, physicians interview the family and review the 

patient’s EHR to generate a list of phenotypic features mapped to HPO terms. 

11. See 10. 

12. Between 2 and 20 HPO terms are typically gathered from a patient. 

13. While sequencing is ongoing, Phenomizer and/or SSAGA are used to identify candidate genes of 

interest based on the HPO terms and a list of 6000 genetic diseases (differential diagnosis). Phenomizer 

calculates a similarity score between the HPO terms entered and HPO terms associated with the diseases. 

P values from Phenomizer are used to sort potential diseases, and diseases without known causative 

genes are removed. Inheritance pattern, if known, is also used to filter results, and lists are reduced to 

100-250 disease entries, if necessary, based on manual inspection or re-evaluation of 

mandatory/optional HPO terms. 

14. Clinical Presentation: SSAGA takes HPO terms and provides differential diagnoses based on 

OMIM, Orphanet, and DECIPHER disease entries that include at least one feature. SSAGA is essentially a 

correlation tool, and maps features of 591 well-established recessive genetic diseases with paediatric 

phenotypes. Includes 227 clinical terms in 9 categories. Diagnoses generated by SSAGA can be stack-

ranked based on the number of matching terms to prioritize. 

15. Data analysis for the rapid workflow is performed using an Edico DRAGEN processor operating on 

a separate server running 2x Xeon CPUs and the DRAGEN FPGA connected to 32 GB of DDR3 RAM. 

Computationally intensive functions are performed on the FPGA, other functions run on the multi-

threaded Xeon CPUs. Storage is supplied by SSDs in RAID 0. .bcl can be converted to .fastq by standard 

Illumina software, but for additional speed .bcl can be streamed directly into the FPGA and .fastq files 

can be generated there. After alignment, duplicates are flagged, and the DRAGEN variant caller 

generates a .vcf file. The entire process from .fastq or .bcl to .vcf is executed as a single workflow within 

the FPGA. Previous pipeline with Casava and GATK took 15 hrs, now 40 mins. Around 5,2 mio variants 

are called per sample, of which around 5 k are potentially relevant clinically. Primary data is not 

maintained, but .fastq (104 GB), .bam (71 GB), .vcf (1,2 GB), and an annotated variant file (825 MB) 

are put in permanent storage. 

16. Variants are stored in an in-house DB, CMH variant warehouse. As of 2016 CMH contained 69,8 

mio variants, 4584 samples, and 4,6 bn variant calls. A hadoop job updates allele frequency for all 

variants 5x daily, which is used to help prioritize variants.  

17. RUNES is a variant annotation pipeline. RUNES applies a series of sequential steps that each add 

information to all variants in the dataset. Annotation tools include the ENSEMBL Variant Effect Predictor 

(VEP), a comparison with dbSNP, CMH splice impact evaluator and transcript context characterizer, and 

comparison with HGMD. At the end of annotation, variants are classified automatically to ACMG 

guidelines based on the accumulated evidence in the annotated .vcf. This relies heavily on status in the 

CMH variant db. Variants previously classified as pathogenic by clinicians in the CMH db are pathogenic. 

New variants that are  likely pathogenic (ie. truncated ) based on annotations are classified as likely 

pathogenic. Variants with >2% MAF in dbSNP are classified likely benign. Variants with >2% MAF  in 
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dbSNP and annotated as benign in ClinVar are classified as benign. OMIM is screened monthly for genes 

to update the internal db with. 

18. VIKING is a user-facing software used to interpret and filter sequencing results. Input to VIKING 

includes the annotated .vcf from RUNES and candidate genes and diagnoses from Phenomizer and/or 

SSAGA. Various static, pre-defined gene lists can also be used to filter, such as genes with OMIM records, 

genes associated with mitochondrial disorders, etc. Filtering can be performed through a web-based GUI, 

but filtering strategies can also be saved so that in future sessions a user can apply the same criteria (for 

example, filter out VUS, benign, or likely benign as annotated by RUNES, filter out anything without a 

SSAGA or Phenomizer predictor, filter out anything above a certain allele frequency in CMH warehouse 

etc.) in seconds. VIKING includes links to the CMH variant warehouse, OMIM, HGNC, HGMD, Entrez Gene, 

ENSEMBL, and pathways information, which assists in literature curation. 

19. Variants are interpreted sequentially by two independent experts. In general, users only look at 

variants in silico classified as ACMG VUS, P, or LP, with MAF of <1%, 0,5%, or 0,01%, or at variants that 

are unique to the patient or the family. Manual .bam review in IGV is performed to exclude low coverage 

in the proband or parents as a source of potential artifacts. Real-time IGV links are included in VIKING. 

Users examine all monogenic inheritance patterns (de novo, mt, dominant, x-linked etc) for potential 

causative variants.  

19.1 User story: VIKING filtering to ACMG cat. 3-5, <0,1% MAF, recessive inheritance, and in OMIM 

as monogenic disease-associated identified 16 variants in 8 genes in an affected infant. Of these, 2 

variants in a single gene fit clinical features of patient and actual inheritance pattern (IGV vs. parents: 

low coverage in parents or other quality issues for most genes). Each variant heterozygous in one of the 

parents, leading to rapid diagnosis. In fast cases, variant annotation in VIKING and diagnosis can take 

40 mins, for complex cases, this can take hours. 

20. Reporting performed by ABMG-certified geneticists with experience in monogenic diseases. 

VIKING exports data and mark-up to a clinical report template. 

21. If patient’s phenotype differs from previous mutational reports for that disease, additional 

experts are contacted, and additional functional diagnostics are employed for confirmation. 

22. Causative variant confirmation through bi-directional sanger sequencing. Sanger confirmation 

takes substantially longer than NGS: at CHM WGS takes 3-12 days (median 7), while sanger 

confirmation requires an additional 14 days. In some instances, physicians may choose to begin low-risk 

therapies prior to confirmation, depending on the severity of the condition and relative risks to the 

patient of either delaying treatment or commencing the incorrect treatment 
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5 EXAMPLE NICU-SEQ PROCESS (CLARK, ET AL. 2019) 

 

Figure 2: Process map of NICU-Seq pipeline from Clark et al. (2019).  This pipeline is more limited in scope and does not include pre-
sampling or treatment decisions as in Figure 1. Steps are labelled to correspond as best as possible with similar processes in Figure 1.
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This process reflects an updated pipeline in use at the Rady Children’s hospital in San Diego. Median TaT 

for clinical samples is 20:10h, but this notably excludes pre-test (consent, sampling), and interpretation 

or reporting activities. This pipeline differs significantly from the 2015 record. Firstly, it takes advantage 

of the new NovaSeq platform. While this does not result in significantly lower TaT (due to the HiSeq 

modifications of the previous workflow), it does provide significantly higher read depth using stock 

sequencing protocols. The molecular biology pipeline is wholly different, and uses a tagmentation-based 

direct whole-blood method and library amplification rather than a PCR-free, shearing and dsDNA-ligation 

protocol. Clinician phenotyping has been replaced with an automated, NLP algorithm, and a second AI 

filters and prioritizes variants and provides geneticists with a short-list of diagnoses. While the 

automated production of phenotypic terms from the EHR likely has no affect on TaT, the automated 

diagnosis has the potential to drastically impact TaT providing it is accurate and trustworthy. Overall, 

most of the time savings of this pipeline over the 2019 version arise from excluding upstream sampling 

and interpretation from the process, by using a direct-blood tagmentation-based library prep, by 

optimizing most processes to take less time than manufacturers indicate, and by automating the 

diagnosis with machine-learning. Points below refer to steps in the above process map (Figure 2), and 

are harmonized with steps in Figure 1. For example, point 8 discusses library prep quality control 

protocols in both pipelines (Figure 1 and Figure 2). 

 

5. To increase TaT, a direct library preparation from whole blood or punch cards was used. From 

whole blood, 10 µL of EDTA blood was used with the optional blood lysis protocol from the Nextera DNA 

Flex Library prep protocol. Briefly, whole blood is lysed in a supplied lysis buffer and proteinase K and 

purified with an on-bead protocol. Estimate processing time is 40 min. 

7. In contrast to the 2015 workflow, a tagmentation-based library prep was used, followed by 5 

cycles of PCR, as is usually necessary with enzymatic methods. According to Illumina, the whole 

procedure including post-library amplification requires 3.5 h for small numbers (<16) of samples. The 

authors report that library prep takes 2:45 h. 

8. Library QC was done with a pico-green assay only, and as in the previous workflow no fragment 

analysis was conducted. The use of direct lysed blood as an input material, without DNA quantification, 

pre-library prep fragment QC, and with only a fluorometric (no qPCR or fragment analysis) QC step pre-

sequencing increases the probability of sequencing low-quality libraries, but skipping these steps does 

increase TaT.  Estimated time for library QC is 30-60 min (however may be 60-90 min if the same 

protocol was used in 2015). 

9. Libraries were not pooled. Simple samples were sequenced with a NovaSeq 6000 and S1 flowcell 

with a 2x101nt PE kit. According to the manufacturer, runs take 19 h and typically deliver 266-333 Gb 

pass-filter data, which corresponds to 80-100x coverage before removing duplicates and quality filtering. 

According to the authors, their S1 runs take 15:30 h and typically deliver 404-537 Gb of data, which is 

significantly more than This represents significantly more data per sample than many other pipelines 

produce. For duo or trio analysis, it appears that each sample was ran separately on a NovaSeq, either 

increasing TaT due to sequential analysis or necessitating the concurrent availability of 2-3 instruments. 

10. While in 2015 a manual process was used to directly developed HPO terms from the EHR, an 

automated method for developing HPO terms was developed here. Clinical records for the patient were 

exported from an Epic EHR into a proprietary .json format and loaded into CLiX ENRICH (Clinithink). This 

data was processed by an NLP package, which coded entries into post-coordinated SNOMED CT 

expressions. The medical records of 16 children were used to train CLiX ENRICH. 
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11. CLiX query library: the CLiX software is built around SNOMED CT expressions, while HPO 

phenotypes are needed for diagnosis. The lab developed a custom library of CLiX queries using a semi-

automated process. HPO terms were passed through the CLiX encoding engine, which generated CLix 

post-coordinated SNOMED CT expressions (i.e. queries) for each recognized HPO term. Where no exact 

matches were found, expressions were generated manually, and where no matches or incorrect matches 

were found, entries were added to the SNOMED CT terminology files in Clinthink to ensure appropriate 

matches between SNOMED CT and HPO were available. The query set used for diagnosis covered 60% 

(7706 of 12786) HPO terms. 

12. After NLP generated a set of SNOMED CT terms from the unstructured EHR data, the library of CLiX 

queries were applied. Exact matches or matches to a SNOMED CT parent/child in the SNOMED CT terms 

derived from the patient EHR record via NLP returned the corresponding HPO term mapped out in the 

CLiX query library. This results in a list of HPO terms for each patient. NB: Versus the 2015 pipeline, 

while this process for developing HPO terms may be more standardized and certainly requires less 

clinician input, it is unlikely to influence TaT as this can occur concurrently with sequencing. 

15. Primary data analysis including alignment and variant calling were performed with an Illumina 

DRAGEN processor (v2.5.1) following the same protocol as in the 2015 paper. Due to the increased 

amount of data per sample, it’s likely that processing time is higher than in the 2015 paper: between 90-

110 minutes depending on throughput and assuming no hardware or software bottlenecks are introduced. 

The authors report that alignment and variant calling takes a median of 1 h for 150 Gb of sequence, 

suggesting that they do not use most of the data generated by the sequencer. 

17. Variant annotation and interpretation was automated with MOON (Diploid software). Variants 

were annotated with ClinVar, dbSNP, dbscSNV, Apollo, Ensembl, GnomAD, HPO (see 12.), DGV, dbVAR, 

and MOON. 

18. MOON uses a black-box machine learning approach to generate a list of provisional diagnoses 

using various methods including NLP, Bayesian models, decision trees, and neural networks. No 

information on how this process is conducted or how the software is trained is available. A complex 

series of filters was applied by MOON, but what these are is not specifically indicated in most cases, but 

do rely on various annotations. This software outputs a ranked list of candidate variants with associated 

diseases. Presumably a geneticist or other professional evaluates these diagnoses, the quality of data 

underlying them, and considers confirmatory testing, however these are not considered part of the 

20:10 h pipeline  in this study.
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6 DRIVERS OF TURNAROUND TIME 
After reviewing this process map, several findings were identified and potential areas for further 

investigation were ranked by OUS and DNV GL. Key drivers in the pipeline are the sequencing process 

(which can take from under one to several days depending on the sequencer and reagent choice), 

bioinformatics (in particular read alignment and variant calling), and interpretation (which depends 

heavily on infrastructure available to clinical geneticists and up-stream annotation efforts). This is 

supported by the in-depth mapping of the CMKC pipeline as well as experience from OUS in rare disease 

diagnostics. 

6.1 Sequencing 
There are a limited number of design decisions available with regards to sequencer and reagent choice. 

While the example pipeline involved modifying an Illumina HiSeq, this approach requires significant 

technical skills, may make troubleshooting difficult, and makes upgrades to chemistry or software 

difficult if not impossible. Outside of ‘hacking’ the sequencer, discussions turned to sequencer and 

reagent choice. One of the clinical requirements for this pipeline is that duos or trios can be sequenced 

concurrently, since this reduces the number of false positive variants significantly and can aid in 

interpretation. This could be either done by running samples on separate sequencers (which increases 

cost significantly and introduces scheduling, capacity, and reproducibility issues), or by running a higher-

throughput instrument and multiplexing samples. 

1. AMG has access to most appropriate sequencing platforms. 

2. For 30-35x coverage, many centers aim for around 100Gb raw data per sample.  

3. Possible sequencing options are listed below. Note that any choice will require tradeoffs between 

run time, throughput, and cost (not included as a factor here, since institutional pricing varies 

significantly).  
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4. If the aim is to support trios with a short TaT, the NovaSeq running short reads with S1 (2x100 

for 19h or 2x150 for 25h) or S2 (2x50 for 16h) flow cells is likely the most appropriate platform. 

Note that cost has not been considered here, nor have downstream considerations due to 

differences in read length (ie. greater utility of split-reads alignment with longer chemistries for 

rearrangements). 

Platform Flowcell Reagents Output Run 
Time 

NextSeq 550 High-Output Flowcell 2x150bp 100-120Gb 29h 

HiSeq 3000/4000 Single Flowcell 1x50 105-125 1d 

2x75 325-375 ~3d 

2x150 650-750 3.5d 

HiSeq X Single Flowcell 2x150 800-900 3d 

NovaSeq 6000 SP 
 

2x50 65-80 13h 

2x150 200-250 25h 

2x250 325-400 38h 

S1 2x50 134-167 13h 

2x100 266-333 19h 

2x150 400-500 25h 

S2 2x50 333-417 16h 

2x100 667-833 25h 

2x150 1000-1250 36h 

S4 2x100 1600-2000 36h 

2x150 2400-3000 44h 
Output: Single sample only, duo possible, suitable for duos+trios, excess 
capacity 
Time: >1.5 days 
Costs not included in this table: Service-level costs in US from one institute are 
7,4kUSD for S1 PE100, 12k for S2 PE50. 
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An additional factor influencing flow-cell and reagent choice is process scheduling: there is no benefit to 

TaT from choosing a faster sequencing protocol if that introduces a wait time prior to the next step. In 

the CMKC example pipeline, library prep was completed in the afternoon of day 1 of testing, and 

sequencing ran from the evening until the middle of day 2. An automated set of scripts handled data 

transfer and initiated the bioinformatics pipeline, but by scheduling this in the middle of the day 

automation would not be a strict requirement. This combined with automated bioinformatics processing 

allowed interpretation to be carried out in the late afternoon of day 2.  

5. For the OUS pipeline, assuming sequencing can also begin by 17:00 on day 1 of testing, 

sequencing on the NovaSeq could end by 09:00 (S2 2x50), 12:00 (S1 2x100), or 18:00 (S1 

2x150). 

6. If manual steps or human oversight are required to initiate and monitor the bioinformatics 

pipeline, shorter sequencing times may be preferred. 

7. If the entire bioinformatics workflow can be completed within several hours, interpretation may 

be possible in the afternoon of day 2. If the bioinformatics pipeline takes longer than several 

hours, it may make sense to choose a longer sequencing run, initiate the bioinformatics in the 

afternoon of day 2, and begin interpretation on day 3.  

6.2 Primary Data Analysis 
One of the major drivers in bioinformatics pipeline run time is the time required for aligning reads, 

removing duplicates, and calling haplotypes (.fastq to .bam or .cram). The second most computationally 

expensive task is calling variants (.bam or .cram to .vcf). Together, these two steps can easily comprise 

over 1d in processing time. For fast TaT in a NICU setting, providers are essentially locked into using the 

Illumina DRAGEN processor, a specialized FPGA, hardware, and software platform for fast read alignment 

and variant calling. Other than optimizing scheduling, I/O to a local or AWS DRAGEN node, or similar 

tasks, there are few design decisions that could be made here. Note that several hospitals have found 

that scripting and automating transfer between tools within the bioinformatics pipeline improve TaT, 

partially due to less hands-on time, but more importantly through the ability to execute processes during 

off-hours. 

6.3 Interpretation 
Perhaps the greatest opportunities for improving TaT come from optimizing the annotation, 

interpretation, and reporting process. There is great variability in pipelines, which often comprise mixes 

of open-source tools, commercial software, and manual expert analysis to varying degrees. Furthermore, 

interpretation time can vary significantly from case to case, depending on the  inherent difficulty, how 

much automated (provisional) diagnosis can be relied on, and how well geneticists are supported by 

interpretation portals and clinical decision support software. In practice, while pipelines analysed often 

claim TaT of around a day, in routine clinical use mean TaT often stretches to weeks, often due to 

difficult interpretation. 

While a number of discussions surrounding what the appropriate databases, annotations, and user-facing 

platforms for variant interpretation are beyond the scope of this work, the question of how to best 

integrate phenotypic data into the pipeline is important, and it was decided to focus future efforts on this 

topic. 
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7 OVERVIEW OF RELEVANT HEALTH ONTOLOGIES  
An overview of rapid NICU-seq and adult rare-disease pipelines and various studies show the utility of 

phenotypic information in promoting both speed and diagnostic yield. Phenotypic data in a rare disease 

setting is most often used in one of two ways: either to determine the contents of a molecular test (a so-

called panel or filtering approach), or to guide the interpretation of a broad WGS or exome approach 

through prioritizing or otherwise ranking variants within genes related to disorders that affect the patient 

phenotype. Regardless of which approach is taken (filtering or prioritizing), labs and medical device 

manufacturers need to examine carefully how and what data they collect, how this is used in practice, 

and how this integrates with the IT of the wider health system. We conducted a short survey of medical 

ontologies here, meant as a high-level overview. Ontologies were chosen based on their use by common 

bioinformatics tools or health record systems, their capacity to describe human disease or phenotypic 

information, and their relevance in the modern health system. 

a. Unified Medical Language System: 

i. UMLS  (https://www.nlm.nih.gov/research/umls/ ) is a metathesaurus that links 

terms and codes from several ontologies and groups concepts in a semantic 

network. UMLS unifies hundreds of application-specific vocabularies 

(https://www.nlm.nih.gov/research/umls/sourcereleasedocs/index.html), 

including ICD-10, LOINC, MeSH, HPO, and SNOMED CT. A mapping of SNOMED 

CT to ICD-10 codes is maintained by the NLM, however direct mappings of other 

ontologies including HPO are not available. 

b. SNOMED CT: 

i. Owned by the International Health Terminology Standards Organization (IHTSDO) 

since 2007, this standard encompasses around 350 000 medical concepts in a 

structured ontology. At its core, SNOMED consists of clinical concepts, which 

consist of a description (including a fully-specified name and one or more 

synonyms), Unique identified, and relationship(s) with other concepts. The 

department of e-Helse has recently completed an evaluation project of medical 

ontologies and has begun steps to develop a Norwegian version of SNOMED CT 

(https://ehelse.no/nyheter/ny-utgave-av-helsespraket-snomed-ct-er-lansert-pa-

norsk). 

c. ICD-10: 

i. Maintained by the WHO, ICD is an ontology of medical diagnoses put in place in 

many national health systems (sometimes as-is, and other times modified, such 

as ICD-10-CA in Canada). ICD-10 consists of around 68 000 diagnoses, 

symptoms, and additional information that can be used to describe a particular 

diagnosis. While ICD-10 is limited to diagnoses (some of which are very specific), 

SNOMED concepts may be diagnoses, symptoms, or other data. Both ICD-10 and 

SNOMED are supported in many EHR systems, and both are compatible with HL7 

FHIR. Information on Norwegian implementation here 

(https://ehelse.no/standarder-kodeverk-og-referansekatalog/helsefaglige-

kodeverk/kodeverket-icd-10-og-icd-11) 
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e. LOINC: 

i. LOINC is a research-grant funded project that provides a set of codes 

(https://loinc.org/panels/) and terms for types of health observations, 

documents, and measurements, including codes for particular lab tests. NGS 

tests would be included under Laboratory Order-Mol Pathology Panels, for 

example. LOINC is compatible with HL7, and works in conjunction with SNOMED 

CT concepts.  

ii. There is a Phenotypes domain panel, but this is meant to capture protocols for 

determining exposure or other rough phenotypic testing (ie. the skeletal panel 

includes only a few protocols for testing for specific bone disorders, no way to 

include an inborn phenotype). The ontology is designed to allow users to 

describe particular tests within a hierarchy of test types, not phenotypic patient 

data per se. 

f. HPO:  

i. Academic project (core of the Monarch NIH grant) develops an ontology 

of >13 000 phenotypes in a structured hierarchy along with ORPHA disease 

associations, ORPHA and OMIM gene associations, and LOINC associations. 

ii. Most commonly used ontology for NGS testing for rare disease. 

g. HL7: 

i. Within HL7, phenotypes can be included as observations 

(http://hl7.org/fhir/observation.html). Observation category is likely exam, 

which is a catchall for general physical findings and other direct observations 

made by clinicians. These can be added as short text, in which case clinicians 

could upload free text describing the phenotype or HPO terms directly. In either 

case this would not be stored as structured data, so the integration of phenotupic 

data within HL7 is weak at best. 

ii. There is an active HL7 clinical genomics working group that has proposed a 

domain information model for genotype, phenotype, and interactions 

https://www.hl7.org/documentcenter/public_temp_E18464AA-1C23-BA17-

0CCD810949D743D2/wg/clingenomics/docs/HL7%20Clinical%20Genomics%20O

verview%20-%20May%202015%20-%20CG%20DIM%20-%20Shabo.pdf  

iii. More information here, not clear that this is in progress or implemented. Based 

around a genotype-phenotype association data model: 

http://www.hl7.org/documentcenter/public_temp_E18464AA-1C23-BA17-

0CCD810949D743D2/wg/clingenomics/2018%2004%2003%20-

%20V2%20LRI%20-

%20Ch.%205%20CG%20and%20Code%20System%20Tables.pdf  

A recent publication from the Norwegian directorate for e-health covers similar topics here: 

https://ehelse.no/standarder-kodeverk-og-referansekatalog/helsefaglige-kodeverk  
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8 SELECTED TOOLS USING PHENOTYPIC DATA 
We conducted a non-exhaustive survey of tools used by labs in rare disease diagnostics for collecting, 

curating, and automating parts of their analysis based on phenotypic data. A subset of bioinformatic 

tools which are used in clinical sequencing pipelines at other institutions are presented below. 

1. Phenomizer: (Koehler, et al. 2009) http://compbio.charite.de/phenomizer/ 

a. Open source, RUO software for differential diagnosis.  

b. Clinicians select a set of HPO terms (complete ontology is available, along with 

ancestors/descendants in tree). HPO terms are described as observed or mandatory (if a 

specific HPO term is mandatory, any syndromes not associated with that HPO term will 

be disregarded). 

c. A statistical model based on semantic similarity is used to generate scores and p values, 

effectively creating a ranked list of syndromes most-to-least likely to be associated with 

the HPO terms chosen (differential diagnosis). This can be manually refined. 

2. Exomiser (Smedley, et al. 2015) and Jannovar (Jaeger, et al. 2014):  

a. Exomiser and Jannovar are java-based tools for annotating .vcf files. Jannovar annotates 

variants with transcript definitions, predicted pathogenicity from dbSNP, and population-

level variant frequency from several external databases. Exomiser is used to filter and 

prioritises potentially causative variants. 

b. Both tools are open-source and RUO. It appears that the work has been archived by the 

Sanger Institute and the developer has moved to a different institution, but continues to 

make semi-regular updates (https://github.com/exomiser/Exomiser/graphs/contributors). 

c. Inputs include several public databases, .vcf, and HPO terms. 

3. PhenoTips (Girdea, et al. 2013):http://www.gene42.com, https://phenotips.org/ 

a. Limited EHR for collecting, storing, and analysing phenotypic data (with/without NGS). 

Supports pedigrees, allows users to browse HPO, query OMIM with one or more HPO 

terms, and capture phenotypic data through UI. 

b. Different licensing options available. Local implementation possible. 

c. Front-end for building pedigrees, suggests genes for a panel, etc. 

d. If decision is made to use this in practice, several questions: 

i. Who does phenotyping? Do they have access to the tool? 

ii. In practice, using PhenoTips involves implementing a second, NGS-specific EHR 

within the OUS ecosystem, and should not be viewed as a small commitment. 

How is this maintained in the future, and how will it be integrated with existing 

EHR? Specifically, how are HPO terms and ICD codes from PhenoTips integrated 

into the patient record? 

iii. How to validate the software? Is PhenoTips considered a medical device under 

MDR? Seems like most functionalities are simple matching and the display of 

external databases, with the exception of predictive search. Language clearly 

indicates PhenoTips is for the diagnosis of human disease. Regardless of how 
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PhenoTips is classified, a second topic is due diligence and QA for the databases 

used by PhenoTips (or any other tools). 

e. Growth charts are based on WHO growth charts for Canada, and do not provide accurate 

information for other regions. This could be misleading for clinicians using the tool. 

f. When entering phenotypic information, PhenoTips provides a real-time assessment of the 

information content of the terms provided via the Monarch phenotype specificity meter. 

This tool is not developed for diagnostic purposes in humans, and may give clinicians a 

false sense of security, suggesting that their entries are sufficient or of high quality. 

Furthermore, feedback from this tool may prompt clinicians to add additional phenotypes, 

re-phrase entries to similar terms that provide a better score, or otherwise enter 

inaccurate or superfluous data. 

g. After entering phenotypic information, PhenoTips provides a set of suggested genes 

which can be used to prioritize or filter genes for analysis. This tool indicates which of the 

HPO terms included in the analysis lead to inclusion for each gene. While this does 

provide some level of transparency, it is not clear how this module determines a given 

gene is included. Several examples with test HPO terms included genes with no clear link 

to the phenotypes in question when viewed in OMIM. PhenoTips also provides links to 

Ensembl and RefSeq entries for each gene on the suggested list. 

i. OMIM entries are submitted when mutations are published in the scientific 

literature and are reviewed by staff at Johns Hopkins, paid for through 

crowdfunding. OMIM is free for research use only, but requires licenses for 

commercial use and is not intended for the diagnosis of disease. OMIM entries do 

include the names of contributors and dates of submissions and edits, but not 

which content was edited. OMIM entries contain substantial links to related 

scientific literature, so while thorough do take substantial time to fully evaluate. 

4. Patient Archive (http://patientarchive.org/): 

a. Garvan institute’s online portal for sharing and storing clinical cases (including HPO 

terms). Based on HPO and Bio-LarK CR concept recognition (Groza, et al. 2015). 

b. RUO, proprietary. 

5. Moon (http://www.diploid.com/moon):  

a. Commercial software developed by Diploid, a small Belgian startup. 

b. .vcf from exome or WGS, age of onset, gender, and HPO terms are entered into web 

interface. Black-box AI suggests a causative variant. Clinicians can review, or choose to 

look at additional variants, and add these to a report. Automatically generates a 

discussion section about that variant, and clinicians manually add a classification and 

references. Positioned as a competitor to Exomiser. Unclear how the model is built or 

what sorts of data are used to train or test algorithm. No detailed performance data 

available. 

c. RUO. Language surrounding diagnostics, possibilities to run unsupervised (and also re-

run periodically on previous results) and issue automated reports most likely make this a 

standalone medical device under MDR. 
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9 ONTOLOGIES IN PRACTICE 
To inform design choices in the OUS NICU-seq pipeline regarding the gathering and use of phenotypic 

data in rare disease diagnostics, we conducted a survey of practices amongst other NICU-seq pipelines in 

use by both hospitals and commercial diagnostics providers. 

1. Blueprint Genetics: A commercial integrated diagnostics provider. Relies on free text with 

submissions, interpretation done by in-house geneticists. 

2. Children’s Mercy Kansas City: Manual review of EHR and interviews with family to gather HPO 

terms in SAGA software (Thiffault, et al. 2019).  

3. Rady San Diego: CLiX software to generate SNOMED CT codes from EHR free text, custom 

SNOMED CT to HPO mapping for a limited set of SNOMED CT concepts that relate to HPO terms, 

then use tools developed for HPO for variant prioritization (Clark, et al. 2019). 

a. Fastest performance previously was 26h, 37h to diagnosis in a clinical setting, but mean 

time to diagnosis was 16d. Here median TaT 20:10h. 

i. Old pipeline: Manual order, TruSeq DNA manual library prep, HiSeq 2500 rapid 

run, DRAGEN v1, HPO from EHR via manual review. HPO and vcf loaded into 

Opal (Fabric). Manual transfer of some files (Miller, et al. 2015). 

ii. New pipeline (Clark, et al. 2019): ePortal order from EHR. Manual or automated 

Nextera, NovaSeq S1, DRAGEN v2, NLP for HPO terms from EHR. Automated 

comparison of HPO and vcf (differential diagnosis) through custom platform and 

display highest-ranked answers. Scripts to transfer files. HPO and vcf transferred 

to Moon (Diploid, belgium) for automated diagnosis (direct competitor to 

exomiser, runtime ~1h).  

b. Their ICD and DRG codes are sparse and not specific enough, this is the need for NLP. 

c. Use CLiX enrich NLP to generate SNOMED CT. Manual mapping of SNOMED to HPO for 

many terms. 

d. Very small training/test sets for NLP vs. other AI applications. 

e. Moon giving too many FP, using InterVar (Li and Wang 2017) to filter out variants post-

annotation. InterVar is an open source, RUO package which automatically annotates 

variants with classifications according to ACMG criteria. This pipeline only retains variants 

classified as P and LP. 

f. Scheduling library prep in PM, sequencing and data analysis O/N, and reporting following 

AM. 

4. Centogene: Ordering physician checks off phenotypes from a pre-defined list (not given as HPO 

terms). This is a slightly different context, as physicians are also required to pre-determine the 

disease to test for (provided from a 93-page list of diseases and their respective OMIM gene, 

broken down into several categories). Seems they are using a panel-first approach, in contrast to 

many programs. 

5. Sick Kids Toronto: PhenoTips (Girdea, et al. 2013) used by clinical geneticist to generate HPO 

terms for prioritization. 
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7. Genomics England: For rare disease program, allows clinicians to choose from a curated set of 

HPO terms, broken up by specialty (see rare disease data models: 352-page guidance document 

that presents selected HPO terms by suspected disorder group) 

https://www.genomicsengland.co.uk/about-genomics-england/the-100000-genomes-

project/information-for-gmc-staff/rare-disease-documents/. There is also a guidelines doc on 

developing an HPO model for rare diseases. Like Centogene, these seem to be used in a panel-

first approach.  

a. Disease models are broken up into 21 medical specializations.  

b. These guidelines are fairly subjective (ie. aim for 20-40 HPO terms per disease, avoid 

‘common’ terms), but it seems that disease model development is transparent and open 

to criticism and additional layers of internal continuous improvement. 

c. Within the guidance documents, phenotypes are listed in HPO terms, but they also 

supply indications for testing and a list of clinical tests. Disorders are also ordered in a 

structured hierarchy based on clinical specialty. Two categories are available (ultra-rare 

disorders and genomic medicine service indications) in the event that clinicians have no 

idea of the type of disorder affecting the patient. 

d. Genomics England uses Open Clinica for submission and data capture and has a separate 

tool (labkey) for validating data. More on HPO data capture here 

(https://community.openclinica.com/sites/fileuploads/akaza/cms-

community/marketing/OC15_Matser.pdf)  

e. Other sources of disease data models: NIH GARD has HPO terms tiered into 

commonness for each disorder (https://rarediseases.info.nih.gov/diseases/, under 

symptoms). Not all disorders have HPO terms, and for many disorders phenotypic 

information is more presented as text.  

f. OMIM contains extensive clinical data for each entry, however these are not coded as 

HPO. While these are less interesting from an automated differential diagnosis 

perspective, referencing OMIM and/or GARD as a part of the diagnostic process after 

candidate variants are presented seems beneficial. 

g. The HPO database directly links to Orpha and OMIM diseases, and presents a list of HPO 

terms divided into high-level categories for the disease in question. Many diseases have 

a long list of HPO terms (60-70), and these have no indication of prevalence, so the 

primary diagnostic power of this may be limited. 

 

10 CHOOSING AN ONTOLOGY FOR PHENTOYPIC DATA 
Given this background understanding of available ontologies and tools for incorporating phenotypic data 

into diagnostics, we examined how exactly phenotypic data in incorporated within each ontology and 

which tools and processes could be used in the OUS context.  

The first question to address is what ontology to collect phenotypic data in. Primary choices here are 

SNOMED CT and HPO. Other ontologies may be useful, but primarily serve supporting purposes. 

SNOMED CT is used more widely in healthcare, and alongside a commitment to develop Norwegian 

resources based around SNOMED CT is likely to tie into more medical services in the future. HPO, in 

contrast, is used more widely in the rare disease and translational research context. While 
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interoperability with other medical services may be low in the future, this does however mean that 

systems for differential diagnosis arising in the research setting are available, and that HPO data is more 

actionable in the context of rare disease.  

There are dozens of tools for gathering and utilizing HPO data for the purpose of rare-disease diagnostics 

already, and notable key initiatives across the globe rely on HPO. Additionally, almost all pre-existing 

NICU-seq pipelines rely solely or significantly on phenotypic data in HPO format as part of their variant 

filtering or prioritization processes, providing a comprehensive pre-existing body of experience to build 

from. While SNOMED CT contains roughly 27x more entries than HPO, most phenotypes from HPO do not 

have equivalents in SNOMED CT (roughly 70%) or UMLS (roughly 66%) (Dhombres and Bodenreider 

2016).In general, the deep phenotyping needed for variant prioritization is of limited use in a wider 

medical context, however is essential for rare disease diagnostics. 

In light of the merging of research and clinical infrastructures in genomics and the greater prevalence of 

NGS-based diagnostics in healthcare, there has been public commitments from both SNOMED CT and 

GA4GH to develop comprehensive bi-directional linkages between SNOMED CT and HPO in the future.  

We found two published HPO to SNOMED CT mappings as of May 2019. One manual mapping of HPO to 

SNOMED CT terms found only 30% complete equivalence, and partial (lexical or logical) mappings for an 

additional 62% of the HPO corpus (Dhombres and Bodenreider 2016).  

A second set of partial mappings was developed and presented in a 2019 paper (Clark, et al. 2019). In 

brief, the authors used NLP software to automate the extraction and encoding of HPO terms from free 

text from EHR entries. To do this, they used a commercial software that analyses free text and 

generates SNOMED CT concepts. Starting from the HPO corpus, they developed queries for 

approximately 60% of HPO terms, that would search for appropriate SNOMED CT concepts. In the final 

implementation, software automatically scours the EHR and generates SNOMED CT concepts, which are 

searched with the HPO query library. If encoded data matches the query, the corresponding HPO term is 

added to the list for that patient. The list of automatically generated HPO terms can then be used for 

diagnosing rare diseases, again with an automated machine learning pipeline. 

Given the predominance of HPO-based input tools and moves towards a comprehensive HPO to SNOMED 

CT mapping in the future, it seems that gathering, processing, and storing phenotypic data as HPO terms 

is likely to be a more productive path forward in the near term, with the understanding that should this 

deep phenotyping data be integrated into other health services in the future, mapping to SNOMED CT 

will be possible without changing the up-front processes used at OUS. 
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11 USING HPO IN THE CLINIC 
In addition to verifying and validating the software and databases used for storing and using HPO terms 

for rare disease diagnosis, there are numerous other considerations for OUS before implementing a 

clinical pipeline incorporating phenotypic information. 

Firstly, SOPs and process maps for the phenotyping, data collection, and use of HPO terms in diagnosis 

should be codified and compliant with the existing quality management system. As some of these 

processes are by necessity subjective, test plans for both the phenotyping procedure and the use of 

phenotypic data in variant prioritization should be developed, and tested out in a clinical investigation. 

Particularly as both the phenotyping and interpretation can potentially require a broad range of 

stakeholders, sufficient training materials and a clinical roll-out plan should be developed, with the goals 

of ensuring accurate and consistent phenotyping and use of phenotypic data. 

Additional technical questions require decisions. Firstly, whether to allow clinicians to input free-form 

HPO terms, or whether these should be limited to specific disease-directed inputs. Free-form term entry 

may lead to an abundance of non-specific or irrelevant terms, decreasing diagnostic utility, and to 

decreased consistency between clinicians. Additionally, while some terms may be highly clinically 

relevant for certain types of patients, these may in fact have limited or negative clinical utility in other 

scenarios. A second technical question surrounds whether to use HPO terms to filter or to rank variants. 

While a strict filtering (ie. in silico panel) approach is more likely to remove a greater number of false 

positive variants and lead to faster TaT in cases with clear, causative, or previously identified variants, a 

ranking approach is likely to contribute to higher overall diagnostic yield.  

While PhenoTips (Girdea, et al. 2013) is a candidate software for data capture, technical questions 

surround implementation and the downstream use of this data. Firstly, there is significant regulatory 

uncertainty surrounding PhenoTips and EU medical device regulations. The manufacturer’s marketing 

language clearly indicates a diagnostic purpose under MDR: “PhenoTips® is a software tool for collecting 

and analyzing phenotypic information of patients with genetic disorders.”, and some modules of 

PhenoTips do appear to function in clinical decision support. However the manufacturer does not appear 

to have an appropriate quality management system in place, nor is it clear who their authorised 

representative in the EU is, even though their software has been made available on the market. 

Without suitable regulatory approvals, it may be possible for OUS to implement PhenoTips as a custom 

device, however the complete technical qualification and quality assurance for this process lies with OUS 

itself. Similarly, many open-source packages are available for downstream differential diagnosis, variant 

prioritization, or filtering based on HPO terms, and similar regulatory and safety considerations should be 

made when considering implementing these. 

Long-term, assuming robust and standardized systems for gathering and storing HPO data are put in 

place, the possibility of moving these from clinical genomics-specific databases in AMG into general-use 

EHR should be considered. In such a case, whether to incorporate these as HPO, or to validate and use a 

SNOMED CT to HPO mapping or similar technology, and how to identify and mitigate risks for 

inappropriate use of this data in the broader health context will need to be addressed. 
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12 CONCLUSIONS 
We conducted a systematic process mapping of rapid WGS pipelines for the diagnosis of rare disease in a 

NICU setting, and identified 3 main bottlenecks that determine turnaround time.  

1. Firstly, while library preparation and upstream molecular biology does consume several hours, 

there is great variability in the time required to sequence samples. By choosing a reagent kit and 

sequencer that can sequence duos or trios in around one day, TaT can be reduced from half a 

week to less than 24 hours.  

2. Secondly, upstream bioinformatics, consisting of .fastq QC, read alignment, and SNP calling, can 

take many hours with custom bioinformatics pipelines and manual jobs. By utilizing a DRAGEN 

FPGA (Illumina) and automating file transfers and scheduling steps with scripts, this part of the 

pipeline can be reduced from >16 h down to around one hour in a production setting.  

3. Finally, the variant annotation, prioritization, and interpretation parts of the process can vary 

significantly based on the quality of available data and the difficulty of the diagnosis in question. 

In some straight-forward examples with trio sequencing and previously identified, clearly 

pathogenic variants, interpretation can take as little as a single hour, however in a production 

setting this part of the process can take many days. There are a wide variety of systems and 

tools available to geneticists performing this work, and these greatly impact the speed and 

accuracy of interpretation.  

In particular, the use of phenotypic data to automate, prioritize, or otherwise aid geneticists in 

interpreting cases has the potential to drastically decrease TaT. We examined existing medical ontologies 

that capture phenotypic data, of which HPO is the most relevant for this work. We reviewed several tools 

that can aid in using phenotypic information for rare disease diagnosis, and examine how phenotypic 

data is used at several health institutions and integrated diagnostics providers. Overall, while the 

benefits of using phenotypic data for rare disease diagnosis are clear, there are wide discrepancies in 

how this is implemented: some sites rely on mostly manual protocols, while others have automated the 

extraction, annotation, and interpretation to various degrees. 

For the primary purposes of NGS diagnostics, it will be more useful to collect data as HPO terms via a 

tool such as PhenoTips in the short term, and to abstract or translate to SNOMED CT terminology for use 

in the wider health system at a later date if desirable. Given the relatively recent addition of NGS-based 

diagnostics and rapidly evolving understanding of many genetic disorders, a prioritization or ranking 

approach, where HPO data is used to change the order of which variants are displayed to the geneticist, 

is a safer choice than an in silico panel or filtering approach, through which variants are excluded from 

analysis. 

Several open questions remain about the clinical implementation. Firstly, decisions regarding tool choice, 

data flow, and roll-out plans need to be taken by OUS. Tools should be integrated into their existing 

quality management systems, and thorough technical qualification and an evaluation of the safety and 

risk profile of the proposed solution should be conducted. 
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