
 

 

1 Patient Similarity Networks for Precision Medicine 
 

1.1 Introduction 
 

The increasing breadth and scope of patient-related data is redefining the traditional bounds 

of guideline-based patient evaluation and treatment. Precision medicine uses this new 

information landscape to better identify patient subgroups for prognosis and treatment. The 

availability of enhanced subgroups can contribute to better treatment decisions and outcomes 

for patients. 

 

A central premise of precision medicine is that effective and transparent methods can be 

applied to partition patients into clinically relevant subgroups. A promising approach is to 

measure similarity between patients, since similar patients can reasonably be expected to 

have similar response to treatment, and similar outcomes. A natural way to do this is by 

quantitatively measuring similarity between data sets associated with patients. 

 

We have developed a novel computational pipeline to assist clinicians in assigning the best 

therapy to individual patients, by integrating in a novel and transparent way multiple type of 

data from patients (including high dimensional genomics, EHR, treatment, imaging, etc.). 

The underlying method builds similarity clusters of patients: patient similarity networks 

(PSN) are an emerging paradigm for precision medicine, in which patients are clustered or 

classified based on their similarities in various features, including genomic profiles. We 

incorporated the netDx [5] computational framework, a novel approach to patient similarity 

networks that has been recently developed.  

 

The target of this project is a clinical tool that will support prediction of clinical outcomes for 

colorectal cancer based on patient clinical and laboratory data. In clinical practice, decisions 

about alternative therapies for colorectal cancer patients are taken by the clinician on the 

basis of a quite broad and complex frame of data, which are weighted against each other in 

part with the support of guidelines and in part by experience. This complex integration of 

data and knowledge can benefit from a more structured algorithmic guidance. 

 

We began this research with the following objectives: 

 

 A BigMed dashboard tool based on patient similarity networks (PSNs) to help predict 
the clinical outcomes for colorectal cancer using patient clinical and laboratory data. 

 

 An analysis of the performance of the PSN technique for this task, from both a 
clinical and technical perspective. This includes evaluating how well the PSN method 
fits into the domain workflow, and measuring how accurate and useful the results 
are. 

 

 A roadmap for using the tool in different clinical diagnosis scenarios. We evaluate 
and document how data set properties affect performance (e.g., data set size, 
number and type of included variables), and develop a best-practices guide to select 
from alternative methods for structuring patient data for use with the tool. 

 



 

 

 An analysis of our tool's performance compared to predictions made by an expert 
clinician, as well as predictions made by other computational methods. 

 

 Implementing the method in a high-performance computing environment. 
 

The remaining sections of this report describe our research and results, and indicate to what 

degree we met our starting goals. We also describe our evaluation of the patient similarity 

network approach, and what follow-on work would be appropriate to extend this project. 

 

1.2 Introducing the Comet data and the classification task 
 

Our project is focused on the OSLO-COMET data set, a patient database of clinical outcomes 

and data relating to colorectal cancer. We introduce the OSLO-COMET data set, and 

describe how we use this information to classify the outcomes of previously uncharacterized 

patients. 

 

1.2.1 The Comet data 
 

Liver is the most common site of colorectal cancer (CRC) metastases, and the only curative 

treatment is surgical intervention, like surgical resection [1]. The OSLO-COMET trial [2] 

studied outcomes of CRC patients who developed liver metastases, and underwent surgical 

resection.  

 

One outcome of special interest is time to disease recurrence, because this variable can 

influence the use of preoperative chemotherapy and the sequence of treatment modalities. 

Our project evaluated a novel classification technique to predict the time to disease 

recurrence, based on a patient’s clinical and genetic data. 

 

Our goal is to develop a system that can predict the outcome of a patient with respect to 

disease recurrence – will the disease reappear within the first year after treatment (early, or 

short-term recurrence), or afterwards (late, or long-term recurrence)? We do this by using the 

information contained in the OSLO-COMET data set to train a classifier, which is a software 

program that can assign an uncategorized patient to one or more diagnostic or treatment 

categories of interest. We know, for each patient in the OSLO-COMET data set, whether 

recurrence is late or early. Using patient similarity networks, we can learn the patterns 

contained in the clinical and genetic data associated with each patient and so make a 

prediction for the new patient. 

 

The OSLO-COMET data set contains 46 patients, all of whom have undergone liver 

resection for liver metastases. The time for to recurrence (or no recurrence) is known, and, as 

was noted above, the patients have been classified as Long time to recurrence (late) if 

disease recurrence was not observed 12 months after resection, and Short time to 

recurrence (early) otherwise. 

 

Of the 46 OSLO-COMET patients, 28 were long-recurrence and 18 were short-recurrence. 

 

Each OSLO-COMET patient has associated clinical and genetic data which is relevant for the 

classification task. The following Comet variables are most relevant to the present work: 

 



 

 

• Age at liver resection 

• Site of primary tumor 

• Tumor stage 

• Lymph node stage 

• Gender 

• CEA level at liver resection 

• ECOG (Performance status) at liver resection 

• Chemotherapy prior to liver resection 

• Mutations 

• Copy Number Alterations 

 

We now describe how this data, along with the associated outcome classification, can be used 

to create a classifier to predict the class of a new patient, based on that patient’s data. 

 

1.2.2 The classification task 
 

We consider a patient data set, containing variables (also referred to as features or 

covariates) describing clinical, genetic, or other characteristics relating to the patients. The 

patients are also categorized according to a diagnosis or outcome of interest. For the OSLO-

COMET data set, this category is categorized time to recurrence. 

 

 
A central premise of precision medicine is that effective and transparent methods can be 

applied to partition patients into clinically relevant subgroups, such as length of time to 

recurrence of disease [3]. A natural way to do this is to discover patterns of similarity based 

on the clinical and genetic data associated with the patients, which correlate with the outcome 

category of interest. 

 

Long time to recurrence

Short time to recurrence

Each patient has associated data variables:
• Gender
• Age at treatment
• Time to recurrence
• Site of tumor
• Tumor stage
• Genomic mutation data
• Copy number variation data
• …
• …

Comet Dataset: Outcome Categories and Data



 

 

 
 

If we have these two groups of patients, categorized by outcome, and the associated patient 

data, we can now consider classifying a previously untreated patient P, where we have access 

to P’s data. The task is to assign P to the most likely category (corresponding to the most 

likely clinical outcome). In our case, we wish to assign P to either the long-term or short-term 

to recurrence category. 

 

 
 

We do this classification using a recently developed technique called PSNs [4], which we 

describe in more detail below. Patient similarity assigns the new patient P to one of the two 

categories by sequentially measuring how similar P is to each category, and choosing the 

category to which P is closest. The measure of ‘closeness’ is based on the quantitative 

similarity of P’s to the patients in each category. 
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The PSN method assigns a similarity score to each category, which summarizes the similarity 

between P and the patients in the category. P is assigned to the category that scores highest. 

Both scores are reported, which allows the confidence or uncertainty or strength of the 

categorization to be assessed by measuring the difference between the two scores. 
 

 

 

 
1.3 How to classify with Patient Similarity Networks 
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We now present a stepwise description of how we address the classification task. We first 

introduce the netDx framework [5], a recently-developed software framework from the 

University of Toronto, which forms the basis for our system. 

 

We then outline the steps involved in constructing a PSN model for classification, and then 

show how the model is used to predict the category of a new patient.  

 

We then discuss the accuracy and stability of the model.  

 

Finally, we present a user interface design for reporting the results to the user. 

 

1.3.1 The netDx patient classification framework 
 

netDx is a framework for building PSN-based patient classification systems, and it is the first 

to use the PSN approach [5]. netDx was designed to classify a patient of unknown diagnosis 

or outcome based on their similarity to patients for which this outcome has been established. 

 

netDx is not a single user-ready program, but rather a framework of software components that 

is used to create a user-ready program. Our work has focused on developing and evaluating an 

end-user system for CRC outcome prediction, using the functions and procedures contained in 

the netDx framework. 

 

As we have described, our outcome of interest has two categories – short term to recurrence, 

and long term to recurrence, corresponding to early and late recurrence. The netDx 

framework is capable of handling data sets having more than two categories. We present and 

discuss the classification procedure in the context of the two-category task, but the results and 

issues generalize to more complex multi-category cases. 

 

There are many different methods for predicting clinical risk outcome, including logistic 

regression, random forests, support vector machines, deep neural networks, and others. 

Patient Similarity Networks (PSNs) adds a complementary approach to the existing 

techniques, and may offer advantages when handling specific domains and/or data sets. 

 

1.3.2 Preliminary evaluation 
 

The netDx papers discuss positive results obtained when applied to breast cancer and asthma, 

which we found relevant to our area of interest. Additionally, we carried out a pilot study of 

our own to evaluate netDx prior to applying it to the OSLO-COMET data. We replicated the 

results of a previous automated classification of data from the Oslo2 multicenter breast 

cancer study [6]. We found netDx performed with a high degree of accuracy when applied to 

the data and classifications from this paper. 

 

1.4 Building a PSN-based patient classifier with netDx 
 

We now outline the process of building a classifier for predicting time to recurrence. These 

steps are a general approach, which would also be used for other data types and classification 

tasks similar to this one. 

 



 

 

1. Build Similarity Networks: A similarity network contains a quantitative measure of 
similarity between each pair of patients. This is done independently for each 
variable, resulting in one similarity network for each variable. Conceptually, 
similarity measures the ‘distance’ between the two patients, according to the 
variable. For example, when considering gender, a pair of male patients are closer 
than a male and female patient. The measure of similarity is described more fully 
below. 
 

2. Find the Most Informative Networks: Next, netDx uses a train/test procedure is 
used to discover which of the variable-specific PSNs work best to classify with high 
accuracy. It is not expected that all of the patient data variables will have equal 
classification power, and this step eliminates variables found to be uninformative or 
which add noise or uncertainty to the process. 

 

3. Build the Integrated Network: The subset of PSNs discovered in the previous step 
are integrated into a single PSN. The integrated similarity between a pair of patients 
is a weighted combination of the similarities in the composite networks. 
 

The result is a classifier that can then be used to predict the outcome of new patients. In 
practice, the data set used to train the classifier might grow or change over time. It might be 
expected, then, that the classifier might need to be rebuilt using the updated data set, to 
reflect this new information. 
 

1.4.1 Building Similarity Networks 
 

The PSN approach is conceptually intuitive, and supports straightforward methods to prepare 

data for processing. The fundamental concept is that, for each pair of patients (P and Q, say) 

one can measure and encode the similarity between P and Q. For example, we might measure 

how close P and Q are in age, or whether P and Q were diagnosed with tumors in the same 

physiological location. The similarity measure is embedded in a mathematical graph, which 

is a natural way to embed, measure, and process ‘relatedness’ between objects [7]. The 

following figure shows a simple graph showing similarity in age between patients. 

 

 
 

Here, similarity is shown by the thickness of the connecting line between pairs of patients. 

The heavier the line, the more similar (closer in age) the two patients are. 
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Similarity networks are not limited to numeric or quantitative data. Categorical data can be 

represented by networks as well. The following similarity network shows the 

presence/absence of a mutation in the APC gene 

 

 
 

This network contains two subnetworks, one for each category. Here, there are two 

categories, but there can be an arbitrary number. The APC similarity network as a whole 

consists of the set of subnetworks. 

 

Networks are a good data structure for this task because they allow similarities based on 

different variables to be combined. This combining is a necessary step in in the process, as 

will be shown. 

 

Note that, in the simplest case, each PSN represents a single data type or variable from the 

data set. This enables a clear and simple way to encode the desired information. However, the 

PSN approach does not require these simple encodings. Many data types can be encoded in 

PSNs in alternative ways. More refined methods of encoding the data can be used, which 

may enhance the power of the model.  

 

As an example of a more structured encoding, consider a data set that contains mutation 

information for a large number of genes, scored as yes/no as was done for APC above. For 

various reasons, such as computational performance, or the risk of introducing noise or 

overfitting into the model, constructing one PSN per gene may not be desirable. A wiser 

alternative may be to reduce the number of variables by creating PSNs based on genetic 

pathways, with one PSN would be constructed per pathway. For each PSN, patient similarity 

would be scored by looking at the mutational impact on the pathway. 

 

The choice of how to construct PSNs from the patient data is the most consequential part of 

building the system, and the one to which the most time and effort is devoted.  

 

1.4.2 Finding the Most Informative Networks 
 

The OSLO-COMET patient data consists of a large range of different variable types, drawn 

from a variety of sources. Some types are descriptive (age, gender), some describe treatment 

(chemotherapy/no chemotherapy), and others describe molecular genetic tumor state 

(mutations, copy number alterations). It is reasonable to expect that not all of the variables 

will contribute equally to discriminating between the long-term and short-term categories. 

netDx uses an iterative test procedure to find those variables – as encoded by the similarity 

networks – to rank the variable-specific similarity networks according to predictive power. 

This ranking is based on the performance of the networks in the test procedure, and is 
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reported as a numeric score. Networks that are above a user-defined score cutoff are used for 

further analysis. 

 

It is important to note that this ranking and cutoff selection process is done independently for 

the two categories, resulting in a high-reliability network set for each category. Independent 

sets are used because each category may be best predicted by its own set of networks 

(corresponding to different variables). As a result, categories may have identical sets, the sets 

may overlap, or the sets might be disjoint. 

 

1.4.3 Building the Integrated Network 
 

Those PSNs passing feature selection are used to compute a single integrated PSN. Because, 

as just described, each category has its own set of high-performing variable PSNs, a separate 

integrated network is built for each category. 

 

An integrated PSN is built by ‘adding’ together the variable PSNs. Since some of the variable 

PSNs have a higher importance, weights are assigned to each PSN before addition. Using 

weights gives each variable PSN more or less weight according to its importance. These 

weights are computed by netDx as part of the processing. 

 

In practice, adding PSNs in this fashion reduces to adding together the similarity scores for 

each pair of patients. 

 

As an example, suppose we had three variable similarity networks, 1,2, and 3. For every 

patient pair (P,Q), the integrated network will contain a similarity score PQint calculated from 

PQ1 , PQ2 , and PQ3 , the PQ scores from networks 1, 2, and 3. The calculation would look 

like 

 

PQint = ß1PQ1 + ß2PQ2 + ß3PQ3 

 

Where ß1 , ß2 , and ß3 are weights computed by netDx quantifying the relative importance of 

the PQi in the integrated similarity. 

 

1.4.4 Classifying a New Patient 
 

We now have two integrated PSNs, one optimized for the long-term to recurrence patient 

subset, and for the short-term to recurrence patient subset. 

 

We classify the new patient P by using the integrated PSNs to find which of the two subsets 

most resembles P. This is done as follows. 

 

1. P is inserted into each integrated PSN, and is similarity-linked to each patient in the 
PSN. 

2. A computational method called label propagation finds the aggregated similarity 
between P and all of the patients in the PSN. This is done for each integrated PSN 

3. The label propagation algorithm returns a score for each of the two PSNs. P is 
assigned to the PSN scoring highest. 

 



 

 

1.5 Predicting time to recurrence: Results 
 

We have described how we used the OSLO-COMET data set to build a classifier that assigns 

an unknown patient to the long-recurrence or short-recurrence categories. Two important 

stages of this process are finding good encodings of the data variables, and evaluating the 

performance of the classifier.  

 

As discussed above, a central task of the patient similarity network approach to classification 

is to find a good encoding of the data variables as input PSNs to the model building process. 

We tested a large range of variable combinations, where we selected subsets of the data, and 

encoded them in PSNs in different. We found that the accuracy was best using the following 

Comet variables 

 

• Age at liver resection 

• Site of primary tumor 

• Tumor stage 

• Lymph node stage 

• Gender 

• CEA level at liver resection 

• Chemotherapy prior to liver resection 

 

We measured the effectiveness of the classifier by testing it on patients drawn from the 

OSLO-COMET data set itself. We did this by extracting patients from the data set before 

training, and using the extracted data as a test case. This technique is called leave-one-out 

cross validation, and is a standard method in statistical learning. Briefly, this method 

iteratively selects one patient as a ‘test’, builds a model with the remaining patients, and tests 

if the model can correctly classify the test patient. A patient is correctly classified if the 

model correctly labels it with the known class (long-recurrence or short-recurrence). The 

model accuracy is then defined as the percentage of the OSLO-COMET patients correctly 

classified by the model. 

 

The cross-validation technique iteratively tested all 46 OSLO-COMET patients. The 

classifier correctly labeled 76% of the patients. Of these 35 correctly classified cases, 21 of 

the 28 long-recurrence patients were correctly classified (75%), and 14 of 18 short-recurrence 

patients were correctly classified (78%). 

 

One unanticipated result of our work was that model performance was dependent on selecting 

a good subset of variables to use. We had expected that adding uninformative variables 

would not affect the outcome, since netDx selects the best variables to use. Adding extra 

variables appears to add noise, or make the modeling process subject to overfitting. This 

issue is worth further investigation. 

 

We also feel that it would be informative to analyze the correctly classified (N=35) and 

incorrectly classified (N=11) patients, to discover what aspects or properties of these patient 

groups might explain the performance results. Having knowledge of what makes a patient 

‘difficult’ to classify might aid in redesigning the classifier and improving the results. 

 

The details of how the PSNs were created is described in section 1.11. 

 



 

 

1.6 Classification accuracy compared to predictions by expert clinicians 
 

One measure of the performance and practical utility of a classification system is how it 

compares with the performance of expert clinicians. We have designed a survey consisting of 

balanced subsets of the OSLO-COMET data, which will be sent to about fifteen clinicians. 

Each participant will be sent a set of data which is composed of cases from the OSLO-

COMET data set that is balanced with respect to outcome (early or late recurrence) and 

model performance (correctly/incorrectly predicted). This report will be updated with the 

results and analysis from the survey. 

 

1.7 User interface and reporting 
 

The preceding sections have shown how we build a classifier and evaluate its performance. 

We now discuss how the properties and results of the classification might be presented to a 

user. These designs could be the basis for a component in the dashboard for clinical decision 

support, or an independent tool. 

 

We assume that users of the classifier will have different degrees of familiarity with the 

OSLO-COMET data set and the classification procedure. We can expect users who use the 

system infrequently or are only casually acquainted with the classifier and the underlying 

data. 

 

1.7.1 Model description and metrics 
 

The classification workflow results in a class prediction for a patient. Before this stage, 

though, the user must become familiar with the data and assumptions used to build the 

classifier. It is important to have a display or report that informs the user about the underlying 

design. This information is needed to provide context for the analysis. 

 

1.7.2 . Model and data summary 
 

 

 



 

 

 

 

A summary of the data set and classification categories is in the top heading. This is followed 

(on the left side) by a listing of the  

 

 The formal name of the data set, and the number of patients it contains 
 

 A description of the classification categories 
 

 Data variables and coverage. Coverage indicates how many patients have values for 
this item. The OSLO-COMET data has full coverage – all patients have values for each 
variable. If this were not the case, the coverage value would be less than N, the 
number of patients in the data set. 

 

 The Network Encoding Method shows the encoding method for each variable. There 
are a small number of common schemes that were used to encode data as PSNs. 
These encoding schemes guide how the similarity between a pair of patients (P, Q) is 
calculated. The encoding methods are discussed in more detail in section 1.11. 

 

 Variables Selected for Classification indicates which highly informative PSNs were 
selected for the final model, as described earlier. The selected PSNs have a non-
empty weight value, indicating the relative impact of that network in the integrated 
network.  Recall that PSNs are selected for each category, so there are two lists 
shown. 

 

 

 

1.8 Summary of model performance on the comet data. 
 

Recall that the classifier is tested by sequentially holding out each patient from the data set, 

training a model on the remaining patients, and then using the reserved patient as a test case. 

This is done for each patient in the OSLO-COMET data set. A useful indication of how the 

classifier performs on patients of varying types can be found by examining the classification 

of each patient. 

 

 

ID True 
Class 

Short 
Score 

Long 
Score 

Predicted 
Class 

C1 S 1.00 0.61 S 

C3 S 0.79 0.67 S 

C4 L 0.54 0.79 L 

C5 L 0.89 0.63 S 

C8 S 0.79 0.28 S 

C10 L 0.82 0.47 S 

C11 L 0.93 0.63 S 

C12 L 0.21 0.84 L 

C13 L 0.57 0.89 L 

ID True 
Class 

Short 
Score 

Long 
Score 

Predicted 
Class 

C33 L 0.68 0.84 L 

C34 L 0.71 0.84 L 

C35 S 0.83 0.22 S 

C36 L 0.75 0.95 L 

C38 S 0.79 0.11 S 

C40 L 0.25 0.95 L 

C42 L 0.39 0.53 L 

C43 L 0.29 0.95 L 

C44 S 1.00 0.94 S 



 

 

C14 S 0.03 0.78 L 

C15 L 0.04 0.84 L 

C16 S 0.83 0.72 S 

C17 S 0.79 0.17 S 

C18 L 0.61 0.95 L 

C20 L 0.07 0.84 L 

C23 S 1.00 0.89 S 

C24 S 0.83 0.39 S 

C26 S 1.00 0.94 S 

C27 L 1.00 0.53 S 

C28 L 0.64 0.95 L 

C29 S 0.83 0.44 S 

C30 L 0.36 0.53 L 

C31 S 0.41 0.67 L 

C32 L 0.96 0.68 S 
 

 

C46 L 0.43 0.84 L 

C47 L 0.86 0.58 S 

C49 S 0.28 1.00 L 

C51 L 0.32 0.84 L 

C52 S 0.07 0.83 L 

C53 L 0.11 0.84 L 

C54 L 0.79 0.63 S 

C57 S 0.79 0.28 S 

C59 L 0.46 0.89 L 

C61 L 0.14 0.84 L 

C62 S 0.79 0.22 S 

C65 L 0.50 0.89 L 

C71 L 0.18 0.84 L 

 

 

 

True Class is the known category of the patient, and Predicted Class is the model’s 

prediction. Short Score and Long Score are the similarity scores that the model predicted for 

each category. The highest-scoring class is listed as predicted class. 

 

In addition to showing the predicted class, this table, with additional processing, can offer 

some further insights into classification performance.  There is a slight difference in 

classification performance between short-term (78%) and long-term (75%) patients. One can 

also find patterns in the numeric difference between the long-term and short-term scores 

when considering false positives and false negatives. 

 

1.9 Result of patient classification 
 

The previous section gave an idea of how the model and data properties might be presented 

to the user. We now look at how classification results might be presented. 

 

After reviewing the summary information describing the model and the OSLO-COMET data, 

the user can submit patient data for classification using a suitable interactive interface. The 

system will then perform classification, and report the results. 

 

The results report shows information about the classification of a new patient P, and how the 

data associated with P compares with the OSLO-COMET data set. 

 

 



 

 

 
 

• Patient Data for P summarizes the data associated with P 

• P’s Distribution in Full Data set summarizes where P’s data variables fall in relation 

to the summary of the full data set. 

• Patient Classification shows the relative scores for each category, with the assigned 

category highlighted. Scores for all the classes, and not just the top-scoring class, are 

presented, as this can provide a sense of how confident the classification is. 

 

1.10 Insights into patient classification 
 

The patient classification process has at its core the notion of similarity between patients. 

Classification is based on finding, for an unclassified patient P, those patients of known 

classification that P is most similar to. In a network context, these nearest neighbors of P can 

be seen as those patients with the strongest links to P.  
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The user will naturally be interested in examining the patients closest to P. 

A report component will help analyze data associated with the K nearest neighbors to P. 

 

1.11 Encoding the Comet data as patient similarity networks 
 

The OSLO-COMET data is encoded with two network types – categorical and normalized 

distance. These are described below. 

 

1.11.1 Categorical data 
 

Categorical data features assign patients to one of a number of distinct classes or types. 

Chemotherapy can be such a data type, for example – a patient has had chemotherapy, or not. 

Similarly, tumor localization can be expressed as a categorical feature, where the patient is 

given one of a small number of labels depending on the site of the tumor. 

 



 

 

The category labels can partition the patients into groups, each group containing patients 

having that label. These partitions can be used to encode the variable as a PSN. This is done 

by recognizing that all patients in a partition share a similarity relationship, which is not 

shared by patients outside the partition.  

 

The PSN is created by making a subnetwork from each partition. The patients in a partition 

are connected by links with identical similarity weight (1). Since there is no similarity (with 

respect to the variable) with patients outside the partition, there is no similarity between 

them. The end result is a set of subnetworks like this 

 

 

 
 

1.11.2 Numeric data 
 

A natural way to compare numerical values is to take the difference. The similarity of two 

values is then proportional to the inverse of the distance. PSN similarity is measured on a 

normalized scale. Here, the similarity between any two items P,Q ranges from 0.0 to 1.0, and 

is calculated as 

 



 

 

1 −  
𝑑𝑖𝑠𝑡𝑃,𝑄

𝑚𝑎𝑥𝑑𝑖𝑠𝑡
 

 

Where distP,Q is the difference between P and Q (ignoring sign), and maxdist is the maximum 

value of distP,Q in the data set.  

 

The following diagram shows the patient similarity network for age at resection. Stronger 

similarity is shown by shorter links (some links have been hidden for clarity). 

 
 

 

 

 

1.12 Evaluation of the PSN approach to patient classification 
 

1.12.1 Modeling the data: choice of variables and similarity measures 
 

We earlier presented a subset of 7 OSLO-COMET variables that we found most accurately 

classified patients. This subset was discovered by an iterative process of testing and 
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evaluating groups of variables, and we found this subset to be the most accurate of the 

variables we tested. It is not feasible to exhaustively test all combinations of OSLO-COMET 

variables, so we have no guarantee that the 7 chosen variables have the best performance. 

There may be some other combination that performs better. 

 

This search for the best-performing subset of variables was by a large margin the most time- 

and labor-intensive part of the model construction process. A systematic, automated search 

for the optimal variable set would be a good area to for further investigation. 

 

1.12.2 Stability and variance in the model 
 

As described earlier, netDx selects highly informative networks for each classification 

category, and assigns different weights to them when constructing the integrated PSN. The 

internal algorithm introduces a stochastic element to this processing, which means that the 

classification outcome when considering a new patient can vary slightly in consecutive runs 

of the model. 

 

We found that this variation is minimized in our final model consisting of our best-

performing variable subset. It is still an aspect of the model-building process that needs to be 

measured, and presented to the user as a part of the reporting process. 

 

We described earlier how we measured the accuracy of our model on the OSLO-COMET 

data by classifying each of the 46 patients in turn, and finding the number of patients 

correctly classified (35 out of 46). To account for the stochastic variation, we replicated this 

process 20 times. This gave us in 20 classifications for each of the 46 patients.  

 

We examined the 20 classifications for each patient. We expected one of three outcomes: All 

20 replicates were correctly classified, all 20 were incorrectly classified, or a mix of correct 

and incorrect classifications. We found that no patient fell into this last category. The 20 

replicates were either all correct or all incorrect.  

 

This is not to be expected in general. An alternative model, using a slightly different 

candidate feature subset, classified 4 patients with mixed results. 

 

1.12.3 Need for high-performance computing 
 

The iterative nature of testing candidate feature subsets for modeling, combined with the 

cross-validation accuracy testing and handling the stochastic variance, requires a significant 

amount of computing resources. We therefore developed a parallel pipeline, suitable for 

execution on the Colossus compute cluster hosted by the Services for Sensitive Data (TSD) at 

the University of Oslo. We found this a satisfactory solution, and believe it is suitable to 

incorporate into a user-facing pipeline. 

 

 

1.13 Future tasks and directions 
 

We have identified some areas which would make good follow up topics for exploring the 

potential of patient classification using patient similarity networks. 

 

https://www.uio.no/tjenester/it/forskning/sensitiv/


 

 

 

 The netDx framework performance can be modified or tuned by adjusting some 
parameters that affect the computations. Discovering how best to adjust these 
would boost performance and cut development time when building new models. 
Good candidate parameters for this are 

o PSN weights for network integration. User domain knowledge could be used 
to modify the numerical weights used to build the integrated network. 
Individual weights might be a priori increased or decreased, to adjust the 
influence of specific data variables. 

o Score cutoff for selecting informative PSNs. netDx selects PSNs for inclusion 
in the integrated network based on a numerical cutoff, which can be set by 
the user 
 

 Explore relation between reported per-category similarity scores. netDx assigns a 
category to a new patient P by calculating P’s similarity to patients in each category, 
and selecting the highest-scoring category. As with any predictive system, 
assignment accuracy is not 100%. One possible indication of performance might be 
the relative relation between the computed similarity scores. 

o Scores could have the same ratio, but different magnitudes. Consider the two 
categories short-term (S) and long-term (L). If test patient P scores 50 L, and 
100 S, how does this compare in reliability to 5 L, and 10 S? The ratio is ½ in 
each case, but the absolute values of the scores differ. 

o Do lower magnitudes of scores imply less confidence, even if relative 
difference is the same?  20 S, 25 L differ by 5, as does 40 S, 45 L. Do the two 
pairs of scores imply the same confidence? 

o There are classification tasks in cancer studies where there are more than 
two classes, in contrast to the OSLO-COMET classifier, which has only two. In 
this case, what is the interpretation of the distance between the highest 
scoring category and the others? Is it significantly higher than the second 
highest, or is there only a modest difference between this selected category 
and the others? Would this observation bet useful for calculating the 
confidence that the classification is correct? 
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